## Modeling COVID-19: When will the peak occur in the US?

CDC Statement on first possible community transmission case of COVID-19 in the US

So, given that the CDC recently confirmed the first possible instance of community transmission of COVID-19 (Novel Coronavirus) in the US, I thought I’d guesstimate roughly when the peak of the epidemic would occur in the US with some (extremely) rough modeling.

I’ll be modeling it using the usual logistical model (which I think turns out to be the wrong model for a virus… but let’s just run with it for now) you all learned in your first Differential Equations course. I’ve recently been brushing up on my differential equations (have been getting rusty) in Khan Academy: https://www.khanacademy.org/math/differential-equations/first-order-differential-equations/logistic-differential-equation/v/modeling-population-with-differential-equations

The rate of change of the population N (in this case, Coronavirus cases) with respect to time can be given as:

dN/dt = r*N*(1-N/k)

Where r is the exponential constant (related to doubling-time) and k is the “carrying capacity”, i.e. max number of cases (not actually a good definition for a virus… but again, let’s run with it).

This is solved as:

N(t) = N0*k/((k-N0)*e^(-r*t) + N0)

Where N0 is the population at time = 0.

At the beginning, the number of cases rises exponentially. Early research says the doubling-time of COVID-19 was 7.4 days in the early days of the outbreak in China, according to: Early Transmission Dynamics in Wuhan, China, of Novel Coronavirusâ€“Infected Pneumonia

This is related to the exponential constant by:
r = ln(2)/(7.4 days) = 0.09366853791 (1/days)

According to Wikipedia, 28% of the US population became infected with the Spanish Flu (carrying capacity?): https://en.wikipedia.org/wiki/Spanish_flu

And US population is currently about 327 million people, so we’ll use 91.56 million as our “carrying capacity”:

k= 9.156*10^7 or 9.156e7 (in more compact notation)

And since community transmission just started, we can set N0 = 1. Therefore our equation becomes:
N(t) = 9.156e7/((9.156e7-1)*e^(-0.09366853791 (1/days)*t) + 1)

If we plot t in days:

modeled infected population vs time

https://www.wolframalpha.com/input/?i=9.156e7%2F%28%289.156e7-1%29*e%5E%28-0.09366853791*t%29+%2B+1%29+for+1%3Ct%3C365

So sometime before 200 days from now, COVID-19 should have peaked in the US. Taking the derivative with respect to time, we see there will be a period of about two months when the number of new infections per day will be super high:

US infected per day vs time (simple COVID-19 model) link

This compares fairly well with the peak of deaths for Spanish Flu in the US:

(Thanks again Wikipedia: https://en.wikipedia.org/wiki/Spanish_flu)

We can try overlaying these, and we see that the width of the peak of infections is fairly similar to the width of the peak of deaths from Spanish Flu in the US.

About two months of chaos, potentially. And we have about 5-6 months until this peak.

My model is pretty terrible. A virus doesn’t really have a carrying capacity in the same way… But it does seem to have pretty similar characteristics. I know almost nothing about virus modeling, this is COMPLETELY an amateur, toy model. A guess. There are professionals (like the CDC and the WHO) who do this for a living and you should listen to them, not me. Also, obligatory relevant XKCD webcomic: https://xkcd.com/793/

Posted in Uncategorized | 11 Comments

## SpaceX is great. But Mars needs more than SpaceX.

With the death of Mars One, there are no high-profile companies looking to settle Mars besides SpaceX.

Mars settlement future is currently single-string. Reliant on a single company. What can we do to change that?

Am I missing someone?

On a second note, I’m really missing XCOR. They had something special. SpaceX is doing very well. Has the right architecture for launch (reusability) and wants humans space settlement. And they have a drive to get it done quickly and execute. Blue Origin has only the first two (right architecture and wanting settlement), although hopefully the others will follow… someday?
XCOR had that (although their execution was well beyond concept phase, it did end up lacking a bit). They unfortunately did not have the financial backing of the other two. But they had something more, that’s kind of special: a sort of egalitarian sensibility. They were often fairly right-libertarian in spoken philosophy (as was common among early New Space companies), but they weren’t founded by charismatic billionaires or near-billionaires and so were more worker-focused. They offered free space rides (as part of the shakedown process for Lynx, as I understand it) to all their employees who wished it. That is something special.

So even beyond Mars, we basically have just two companies with the right mix of backing, vision, execution, and technology, and only one is really executing right now (Virgin Galactic seems too small right now… and with the split, seems less likely to be pursuing orbital anytime soon). It’d really be nice if we had a third or a fourth, particularly if they had an XCOR-like egalitarian esprit de corps. Perhaps Musk could eventually be persuaded to transition SpaceX in that direction? Or Bezos/Blue? (I wouldn’t hold my breath for either, but it is a possibility… You can’t have Musk’s democracy on Mars without, you know, democracy… but power is seductive.)

Additionally, I have some ideas for space commerce that require the ability to launch one or two people to Earth orbit (with recovery) for less than a million dollars (ideally <\$100k). But on a dedicated launch. XCOR had that, see here: https://spacenews.com/34930xcor-aerospace-makes-plans-for-reusable-orbital-vehicle/

https://spacenews.com/34930xcor-aerospace-makes-plans-for-reusable-orbital-vehicle/

Â

Â

…but neither SpaceX nor Blue appear to be offering anything close to that now or in the future.

Posted in Uncategorized | 22 Comments

## 2019 Goff Family Pictures

My friends and neighbors the Buies helped us take some family pictures last Saturday at an old abandoned barn over by Waneka Lake. It’s been a while since I’ve posted family pictures, so here are a few of my favorites:

Posted in Family | 4 Comments

## Capstone Project

I am considering sponsoring a capstone project at Florida Polytechnic this year. I believe I have a compensating nozzle that could be checked out within the two semesters the project would last. I had an intern from the school this last summer to work on remote control and robotics for small construction equipment. If I can get them to move on hardware, we should have cold flow tested before Christmas.

If Verification of compensation with cold flow is done, does anyone have a connection with hot fire testing capability that could be done at little or no cost? If so, what sizes and what propellants would be allowable?

I have lost touch with the people that I would have asked a decade ago. And several of the companies they were associated with are gone.

Posted in Uncategorized | 3 Comments

## On Avoiding Some of the Mistakes of Apollo

Today is the 50th anniversary of the Apollo 11 moon landing. With a blog named Selenian Boondocks, I figured it probably made sense for me to say something. Earlier this year, thanks to some good advice from several friends, I took my boys to watch the Apollo 11 movie while it was still available in IMAX theaters. That movie was powerful, and really for the first time in my life helped me really connect with that historic feat. But on reflecting today about the Apollo 11 landings, I can’t help but feel somewhat depressed. NASA may have gone to the Moon 50 years ago, but we haven’t been back in over 46 years–longer than I, or most living Americans have been alive1. While NASA is currently in the planning stages of trying to send people back to the Moon, I’d like to see if we can avoid some of the mistakes we made last time.

The Fruits of Apollo2
While the Apollo Program succeeded brilliantly at its narrow goal of “before this decade is out, landing a man on the moon and returning him safely to the Earth,” the way Apollo was carried out practically guaranteed that we wouldn’t be going back for a long time. There has been a lot of commentary on this topic over the past several years, but I’d like to highlight a few of the reasons why I think the Apollo Program ended up not leading to anything more lasting in lunar development:

• Probably most fundamental, creating a long-term human presence on the Moon was never a goal of the Apollo program. The goals of the Apollo Program were very narrow, and we shouldn’t be surprised that, as I wrote almost a decade and a half ago, your focus determines your path.
• The Apollo Program was built around expensive, expendable launch and in-space hardware for which NASA was the only user, and for which there weren’t really many other real applications. With an expendable architecture for which NASA is the only customer, NASA either had to pay to keep the assembly lines open or lose the capability. And because keeping those assembly lines had required such a big surge in NASA funding earlier, that funding surge became increasingly hard to justify in the face of other fiscal pressures.
• The Apollo Program, as John Marburger put it, did almost nothing to “build a lasting infrastructure to reduce the expense and risk of future operations.”

Additionally, while Apollo dramatically advanced the state of the art in human spaceflight in countless areas, it has also left us saddled with many negative effects we’re still feeling to this day:

• A key part of politically selling Apollo the first time, was setting up NASA centers throughout the Southern United States. As I understand it, Johnson sold Apollo partially as a way to help bring high-paying, high-tech aerospace jobs to the South, which in many areas was still not very industrialized. That we’re still paying for that Faustian bargain today is obvious given how much NASA human spaceflight policy over the past decade continues driven by parochial interests from legislators in Alabama, Texas, Mississippi, and Florida.
• One aspect of that has been the Apollo “standing army” of contractors. After Apollo ended, NASA’s shuttle program was partially driven by finding ways to maintain as much of the Apollo workforce as possible, and that has continued on through ISS, Constellation, and now SLS/Orion. I can empathize with the desire to not let good people go when you have them, but this desire to keep the team together in perpetuity is still distorting our human spaceflight program 50yrs later.
• The processes behind how NASA approaches human spaceflight were developed in an environment of a “waste anything but time” budgets. While those processes might be an appropriate fit for Apollo-level budgets, they pretty much make it impossible for NASA to do anything in human spaceflight for less than \$1B.

In some ways, in spite of how amazing the Apollo Program was, and how many advances it made to the state of the art of human spaceflight, I think it is reasonable to wonder if we wouldn’t be further along in our exploration and economic development of the solar system had Kennedy not made the Moon shot goal in 1961.

We can’t change the past, but I’d at least like to suggest a few ideas for how to hopefully avoid repeating the same mistakes this time around.

Suggestions on How To Avoid An Apollo Redux
Here are a short, non-exhaustive list of ideas for things we could do differently this time, to avoid repeating the same mistakes:

• Leverage Multi-User Systems as Much as Possible: We may be politically stuck with SLS for the foreseeable future, but that doesn’t mean we can’t try to design an architecture that leverages, as much as possible, vehicles that have other customers outside of the lunar program. The obvious example being launch — if NASA can design their architecture to take maximum advantage of commercial launchers used for commercial, DoD, and non-human spaceflight NASA missions, that means that even if NASA had to pause lunar missions for some reason, the launch portion of that transportation system wouldn’t go away. I think people don’t realize how much Von Braun would’ve loved to have today’s commercial launch industry when he was trying to do Apollo3.
• Avoid Single-Source Solutions as Much as Possible: Like with COTS and Commercial Crew, there are real benefits to having more than one potential provider for systems. Tying cislunar transportation to one launcher, one individual, one launch site, etc. makes things unnecessarily brittle–and I don’t just mean SLS here. I have many friends who verge on a “we should just give Elon all the moneys” attitude, but an open architecture that fosters competition, and provides redundancy is good.
• Maximize Reusability From Day One: I know a lot of people who think that we should focus on getting a basic capability as soon as possible, and save bells and whistles like reuse for later. But I’m not sure this logic is as wise as it sounds on the surface. An expendable architecture is likely going to be a lot more expensive, and requires a lot of ongoing funding to keep production lines open or the capability goes away. It’s harder to cancel a capability when you’re talking reusable systems that don’t take a huge amount of money to keep alive when you’re not actively using them. Also, reuse fundamentally requires refueling, which creates a natural market for ISRU–it’s a lot easier to sell ISRU when vehicles are designed for refueling, and you just have to make the case that you can better serve existing in-space refueling customers. In the long-term, in-space reuse of transportation elements is critical to lowering the cost of cislunar trade enough to pull the Moon into humanity’s economic sphere, and I think we’d be wise to start incorporating reuse as early as possible in the program.
• Create Infrastructure to Reduce the Expense and Risk of Future Operations: This one is a little more contentious, and could easily use its own blog series, but I think that creating and maintaining on-orbit space logistics capabilities can be a key part of avoiding the mistakes of Apollo. Having a modest facility4in lunar orbit both makes refueling of reusable elements simpler, but also may make surface operations safer by providing much closer search and rescue options. Avoiding overdoing the infrastructure prematurely is a delicate balance, but if done right, such a facility also provides something that doesn’t instantly go away if funding gets throttled back.
• Maybe Try Settlement From the Start? If a lasting human presence is important, it might be worth deliberately accelerating that process using something like a Lunar One-Way To Stay (for a while) architecture. Having early lunar explorers/settlers stay for deliberately longer duration than the typically proposed days/weeks long missions can dramatically improve the amount you can do on the surface for a given transportation budget, probably would make it a lot easier to get ISRU debugged and up to scale, and forces you to build lasting surface infrastructure a lot sooner.

There is probably a lot more that I could say on the topic, but I’ll save that for future blog posts.

I’d like to end with some more excerpts from John Marburger’s speech from about a decade ago about how we need to adjust our approach to human spaceflight. His comments have aged pretty well in my opinion:

If we are serious about this, then our objective must be more than a disconnected series of missions, each conducted at huge expense and risk, and none building a lasting infrastructure to reduce the expense and risk of future operations. If we are serious, we will build capability, not just on the ground but in space. And our objective must be to make the use of space for human purposes a routine function.

If the architecture of the exploration phase is not crafted with sustainability in mind, we will look back on a century or more of huge expenditures with nothing more to show for them than a litter of ritual monuments scattered across the planets and their moons.

OSTP Director John Marburger at the Goddard Memorial Symposium, March 7th 2008

## Initial BFR (Starship) is not much more powerful than Falcon Heavy

In 2016 when Elon Musk unveiled ITS, everyone thought it was ridiculous and huge. It dwarfed the Saturn V. People were scratching their heads as to how it could possibly launch from LC-39A as pictured, since the 42 Raptors were to produce 128 MegaNewtons of thrust, almost 4 times the Saturn V. SpaceX had only ever launched the Falcon 9 at that point and just recently had started landing them. But now they’re proposing something 4 times the thrust of Saturn V with 42 engines?? Outrageous! Surely that will put a bunch of buildings in danger, exceed the limits of the pad, and cause major problems on the Space Coast. And who even NEEDS a rocket that big?? And the upper stage is a reusable SSTO! Impossible!

In the time since then, ITS (the Interplanetary Transport System which was, before 2016, known as the MCT, or Mars Colonial Transporter–a name not likely to go over well with those with a recent history of European overlords) became BFR (Big… um, Falcon Rocket) and then finally Starship. It went from 42 Raptor engines of 300 tons of thrust, down toÂ 31 of 170 tons of thrust and now, in a tweet, Musk said first flights of the booster would only have “around 20” Raptors: https://twitter.com/elonmusk/status/1131625229367693312

Raptor has achieved its 172 ton thrust, and so absent subcooling of the propellant, that’s likely where it will be for the first operational missions (or perhaps slightly less for margin).

172 tons of thrust times 20 Raptors (could be 19, which packs better) is just 34MN, or just shy of Saturn V. And in the meantime, SpaceX has launched 2 Falcon Heavies, the first one a lower thrust pre-block-5 version and the last one a full thrust block 5 variant. Its 27 engines worked fantastically and produce about 23 MN of thrust. SpaceX has also been building and test-firing flight versions of the Raptor engine, even testing integration into a battleship demo vehicle, the Starhopper. The initial BFR (I’m still calling it that) will have less than 50% more thrust than the rockets SpaceX already is launching. And its possible SpaceX may use, say, 18 engines and throttle them down to 80% for reliability reasons. That’s basically the same as Falcon Heavy, has fewer engines, and addresses all those concerns about flame trench size, infrastructure risk, etc. (Although I suspect that SpaceX will operate with higher thrust.)

BFR is now no longer absurdly over-sized at all. That talking point is over. It’s easily within their demonstrated capability. Fewer staging events also helps. And landing the Super Heavy booster may be easier than landing 3 separate cores simultaneously (no one knows right now). They switched from carbon fiber to stainless steel for fabrication, but that’s probably a step in the right direction if you want the vehicle to fly realsoonnow. Hypothetically (with almost balloon tanks), stainless has the same mass fraction as a carbon fiber (which needs design knock-downs for cryogenics and oxygen, particularly with out-of-autoclave processes) and similar to SpaceX’s current aluminum-lithium alloy. In practice, it seems SpaceX is still literally hammering out the manufacturing process. They have a method that seems to work with Starhopper, but the mass fraction is terrible (built literally by a water tower company). It seems almost like Sea Dragon.

But they don’t HAVE to have extremely good mass ratio. The upper stage doesn’t HAVE to have SSTO-like capability, not at first. It just needs enough to get to orbit with significant payload, say 50 tons. Perhaps it just needs 6.5km/s. That’s also about the delta-v needed to go from the Gateway to LLO then to the lunar surface and back (well, that’s about 6.2km/s total… 5.2km/s if you’re aggressive with your burns).

The difference between 6.5 and 9.5km/s when your exhaust velocity is about 3.7km/s is: e^((9.5-6.5)/3.7) = 2.24. So while SpaceX might be able to theoretically do SSTO with extremely good mass fraction, they can knock that down by a factor of about 2.25 (including long-duration equipment) and still accomplish the mission. That means they may be able to use a fairly crude manufacturing and heatshield system and still accomplish the initial goals of Starship. In fact, Elon has also been discussing an expendable upper stage for certain missions. That gives more options for SpaceX to insert Starship into some operational role much earlier than you might think.

It’s no longer pie in the sky (although the capability is also much lower, but perhaps sufficient). Of course, most of the professional spaceflight community hasn’t grokked that yet. We’ll see how long that takes. With Starlink, it took the splendid orbital launch of 60 satellites for anyone to even raise the question about night time visibility of 12,000 LEO satellites, even though the likely operational visibility was perfectly predictable when it was first announced.

Posted in Uncategorized | 29 Comments

## Disabilities as enabling for space travel

So, the other day I listened to a presentation from the FISO (Future In-Space Operations) working group. They have regular online telecons which anyone can listen to and follow along after the fact on their web archive:
http://fiso.spiritastro.net/archivelist.htm

It was titled “Preparing to Survive: The Case for Disabled Astronauts and Colonists”
http://fiso.spiritastro.net/telecon/Wells-Jensen_5-22-19/

I highly recommend this one as it’s off the beaten path, out of the box, and has some very interesting things I hadn’t considered before.

One of the most fascinating things I learned is:
Some deaf people are complete immune from dizziness from (for example) short-arm centrifuges. That certainly makes artificial gravity easier. Trivial, even.

Another was a more philosophical point. We’re going to bring our humanity with us. We can’t rely on the fighter jock physique. Even if we start that way, injuries can easily happen along the way, so we better be thinking about designing our spaceships and habitats with accessibility in mind. And maybe.. Just maybe… if everyone is blinded from long-duration exposure to microgravity or from smoke or some chemical accident, it might help to have someone on board not reliant on sight. Or at least you should have a spaceship that is still usable without relying on perfect sight. Or if everyone is disoriented on landing on Mars from months in microgravity, having someone immune to dizziness to guide you might also prove useful.

Very thought-provoking talk. I recommend it.

Posted in Uncategorized | 6 Comments

## Amistics of Human Spaceflight, or How Autonomy and Miniaturization can be the Enemies of Human Spaceflight (Part 1)

Neal Stephenson in his novel Seveneves coined the term “Amistics”, deriving from how some Amish people have strong preferences for certain technological paths to achieve the same goal. For instance, these Amish folk swear off modern technology, which for them means electricity. Therefore, they cannot use electric power tools for their furniture-making. Instead, they use just-as-modern air-powered tools. Similar productivity, same result, but they’re able to honor their cultural proclivities. In Seveneves (not to spoil it for Jon), similar proclivities develop in the groups mentioned in the book.

Spaceflight is rife with examples of this. One is the pro-vs-anti hydrogen schools of thought. Dumb, mass-produced expendable vs high tech reusable. But probably the most important for the future of humanity is the amistics of robots vs humans.

It gets started at the beginning of the space race in another example of technology path-dependence. Due to the US’s earlier start, America’s nuclear weapon technology had significantly more advanced miniaturization technology than the Soviets. For reasons I’m not entirely sure of, the US also maintained a very strong advantage in electronics and computerization. Additionally, the US had an advantage in long-range bomber technology. This led to the fact that the Russians focused on ICBMs while the US focused on long range bombers. And secondly, that the first Russian launch vehicles were ENORMOUS in comparison to the US’s. Russia developed the R7 and the Proton in part to be able to lob their nuclear weapons, which (from my limited knowledge) lacked both the miniaturization and precision of their American counterparts. The R7 was so big, that they could use it to launch Sputnik to orbit. And later on, the first crewed launch (Vostok), and eventually even up to 3 people on a single rocket that is used to this day. The US, on the other hand, was caught by surprise by the advanced Soviet ICBMs. Large ICBMs like Proton were not required due to better targeting and miniaturization, thus the US had to develop heavy launch vehicles intently for spaceflight purposes.

And thus the Soviets racked up success after success in the early history of human spaceflight due to the path dependency of tech development. It was only after a concerted, civilian-focused effort of development that the US exceeded the Russians, by an enormous margin.

But the Soviets maintained some of these advantages. They pressed their early leads in human spaceflight and while the US rushed to the Moon, the Soviets developed crewed space stations designed for surveillance. The Almaz program launched Salyut 2, 3, and 5. Soviet military personnel conducted surveillance from orbit in real time. The Americans, for their part, had a similar program, the Manned Orbital Laboratory, or MOL, based on Gemini technology. An uncrewed demo of the capsule was launched, but the program was cancelled soon (in 1969) as it became clear that automatic satellite surveillance was sufficiently advanced that it wasn’t required nor worth the cost. The US’s lead in automation again struck a blow to human spaceflight.

About a decade after (1978), the Soviets came to a similar conclusion and ended their manned orbital surveillance program. But not before advancing their space station technology sufficiently to place them at a dramatic advantage over the US in long-duration human spaceflight (as measured by orbital refueling, human spaceflight duration records, etc), an advantage that STILL has not quite yet been eclipsed (although it’s close). And because of the early focus on large launch vehicles and human spaceflight over miniaturization and automation, the Russian human spaceflight program survived the fall of the Soviet Union and to this day US NASA astronauts rely on Russian vehicles to get space.

Now, humans make terrible surveillance satellites, but these historical examples should make us think twice about whether the best way to push for a future where millions are living and working in space is to invest in miniaturization and automation. Because in my opinion, the most likely result is that any useful things a human can do in space will become obsoleted by robotics much faster than otherwise, thus reducing the need for humans in space at all. That’s not a winning strategy, IMHO. So I hope to blog later about how we can use humans in space MORE, in direct contradiction to the current trendy meme of increasing robotic automation in space.
We need to:
1) Find things for HUMANS to do in space.
2) Make it cheaper for humans to go to space.
3) Make it cheaper for humans to live and work in space.

We need a pro-human amistics, not the current pro-automation amistics (even when it doesn’t make sense, like when Elon tried to fully automate Model 3 production and had to switch over to human assembly). We need to engineer systems very close to the humans, including perhaps modifying the human body itself (or at least developing advanced biomedical countermeasures) to make humans more competitive with robotics in space.

Posted in Uncategorized | 35 Comments

## Blue Moon: Is this really it?

By Chris Stelter

Blue Moon, the recent announcement of an uncrewed lander by Blue Origin, had flare and pomp. A starfield surrounded the select audience as they watched Jeff Bezos, the richest man (okay, if you count his family) in the world, deliver an anticipated announcement. They waited patiently as Bezos gave his usual spiel about Earth being the best planet, about the criticality of reusability, about a trillion people living in O’Neil colonies, about moving heavy industry to space. Then Bezos unveiled…

An expendable descent stage with less payload capacity (3.5 tons) than the Apollo LM truck variant (5 tons). Because it uses liquid hydrogen, it’s very tall and therefore needs a sophisticated mechanism for unloading payloads.

It was so anti-climactic. Everyone knew Blue Origin was working on this lander, I was sure it was going to be something more important or at least *innovative*. I’m not sure if the rocket engine is pumpfed or not, but the lander is designed as if it’s pressure-fed, with Apollo-like large round tanks with external structure.

Its example mission is… landing several smaller payloads simultaneously. Basically, competing with all the smaller lunar lander companies out there. Super disappointing there as well.

It’s like a tiny, uncrewed version of Altair with all the drawbacks but without the advantages of a 16 ton payload capacity. And sure, they showed an ascent stage on top of it, but that appears to be provided by NASA.

In fact, let me list off some concepts I think are better:

1) Starship. Obviously. Fully reusable, much larger payload capacity, crew capable, and being crudely prototyped right now in Texas, not just made into a fancy mockup.

2) The reusable Lockheed Martin lander. Dinospace is not supposed to be this much better, but this is a lot more interesting than Blue Moon.

3) ULA/Masten Centaur/Xeus. More payload capacity, still hydrolox, much closer to the ground. Looks to be a more efficient design. Some of the hardware already exists in some form.

4) Altair. At least they were trying for more capability than Apollo.

5) Apollo LM/LMtruck. 5 ton payload capacity, much closer to the ground. Crewed variant was the only one that flew, so it started out crewed.

6) The Soviet LK lander. Crasher stage FTW. Less payload, but the Soviets did a fine job systems engineering a clever way of dealing with the constraints they were given by the much-less-to-TLI N-1 rocket.

7) Various crasher/uncrasher lander concepts, as discussed here.

8) Delta Clipper on the Moon. If Delta Clipper had been successful, there was thought given to variants of it for Moon or Mars. If you have a SSTO VTVL RLV, why not refuel and go to the Moon? Basically, like Starship. Bezos hired a bunch of old DC-X folk. Why such a mundane lunar architecture?

Blue Origin gets like \$1 billion per year from Bezos. Couldn’t they come up with something better than Blue Moon? Or at least something that didn’t look designed to squash the other small lunar lander outfits? A reusable upper stage? A reusable lander? Anything?

Posted in Uncategorized | 12 Comments

A few weeks back, I asked my followers on Twitter what topics they’d like to see me blog about. One of them suggested that since I do a lot of SBIR proposals at my day job, that maybe I could write an article on advice and lessons-learned for how to write better SBIR proposals.

For those of you not familiar with the term, SBIRs in this case stands for Small Business Innovative Research grants. Basically they’re small R&D contracts that NASA, the DoD and other federal agencies do that only small businesses1 can bid on. Each of these agencies will put out solicitations 1-3 times per year, with a list of topics of interest to the agency. Companies can then submit a proposal for innovative research addressing something in that topic, and if they get selected they’re given typically around \$100-150k of money for a six month Phase I feasibility study contract. If that goes well, they can submit a Phase II proposal, and if they win that, it’s a 2-year \$750k effort that usually culminates in some level of prototype. To make a long-story short, for bootstrapping aerospace startups, SBIRs if done right, can be a good source of non-dilutive funding, and can help you build up technology expertise as you work to get to a point where you can go after bigger commercial markets.

Anyhow, with that digression aside, I wasn’t sure when I got the advice if I was really competent to write something like this. Sure we’ve written a few and won a few, but we’re not really what I would consider an SBIR farm. I think to-date SBIRs have been less than 1/3 of our total revenue as a company. I ran the numbers tonight, and apparently between NASA and DoD SBIR and STTR2 Phase I proposals, including ones where we proposed as subs, we’re now up to over 43 proposals, with 11 wins. So, I think I can say we no longer totally suck at this, and are in fact probably solidly mediocre.

So… with that stirring endorsement in mind, here’s a few tips I could think of to help you improve your SBIR proposaling fu.

2. Sell the Combined Phase I/Phase II Story: This was a piece of advice I got from Greg Mungas, who used to run a propulsion R&D shop5 out in Mojave, and before that used to work at NASA JPL, where he was involved in reviewing SBIR proposals. Basically Greg’s point is that nobody funds SBIR Phase Is just for the Phase I. They fund Phase Is that they think will lead to good Phase IIs. So, when you tell your story in your SBIR, you always want to talk as though you’re proposing both phases. Here’s where we get to in Phase I, which sets us up to do X, Y, and Z in Phase II, getting to this really awesome demo or this point where the technology is ready for flight demonstration, or something like that.
3. Hook Them With the First Page: Greg also pointed out that you get a lot of different sorts of people reviewing SBIRs, but one thing they have in common is that they almost never have time to thoroughly review everything they’re given. So, it’s really important to quickly hook the reviewer with an exciting first page or two, so they’ll be interested and engaged for the rest of the proposal. My typical formula for the first page includes a) a pretty piece of faux CAD6, b) a paragraph setting up a compelling-sounding problem you’re trying to solve, c) a paragraph introducing your concept in 1-3 sentences as a solution to said problem, d) a short bulleted list with some key highlights of the features/capabilities you think you can achieve with your concept, usually with a 1-3 word summary bolded at the start of the bullet followed by an unbolded one sentence description7, and e) a one paragraph summary at the end talking about what you’ll do in Phase I, what technology readiness level that gets you to, and how that sets you up to do awesome things X, Y, and Z in Phase II that will get you to an ever cooler end-state. Basically it’s almost a mini-proposal on one page that gets them excited to read the rest of your concept, and helps them understand where you’re going from there.
4. Cite Chapter and Verse: Most SBIR solicitations ask you in your first section, where you’re describing the innovation, to explain why your innovation is relevant to the topic. In these cases, I’ve found it handy to quote the solicitation verbatim, and highlight or bold or italicize the parts of the topic that you specifically hit. Here is also where you can mention insights you gleaned about their needs from your customer discovery interviews.
5. Quantity Has a Quality All of Its Own: Even if you’ve done your homework well, and are writing an exciting intro, and properly quoting chapter and verse, SBIR solicitations still can be fairly competitive. Your raw odds are typically around 1 in 6 to win something. If you’ve done your homework well, you can get up into the 50/50 range. But that still means you’re best off proposing more topics than you expect to win. We try to shoot for 4-6 proposals each cycle (if we have time), in the hopes of winning around 2 Phase Is, with the hope of converting at least one of those two to a Phase II.
6. Sometimes Its Them, Not You: Sometimes you’ve done everything right and you still get shot down on a topic. Never fear–you should get a debrief a few months later with reviewer comments. Sometimes you caught someone on a bad day, or they misunderstood something. A lot of times we’ll rebid things a few times in a row, with tweaks and improvements based on the feedback you got, and any customer discovery you can fit in between cycles. Rebids typically don’t take as much time to write, and you have more data going in on what they liked and didn’t like. So don’t be afraid to rebid something if you think you had a good idea that got ignored last time around.
7. Don’t Waste Time on an Overly Detailed Materials Budget: Most SBIR solicitations require you to provide a fairly detailed cost budget, including labor rates and hours, indirect rates, and “other direct costs” including materials. The annoying thing is that they want detailed quotes for everything you’re going to order in this research project that you haven’t even started yet. You don’t have final designs yet, and don’t really know what things are going to cost, but they want not just numbers, but quotes or at least some other form of cost justification. A lesson we’ve learned is that proposals never get rejected because your cost justification isn’t detailed enough. If you win the proposal, during contract negotiations they’re going to demand you back things up in more detail, but at that point its a winner’s problem. You still need to get in the right ballpark or you could get yourself in trouble8, but a lot of times our cost justification in the original proposal is a handwavy “estimated based on engineering judgement from past projects of similar complexity.” You do have to get them more justified numbers during contract negotiation, but now you’re dealing with a much smaller number of contracts.
8. Contract Negotiators Hate Travel in Phase I: The people getting you under contract are paid to try and find wasteful proposed expenditures that they can disallow, to cut down a little on how much the government has to pay you for your research. I’m pretty sure they almost always cost the government more than they save, but they’ll go over things with a fine toothed comb. And one of their favorite things to nitpick is travel in Phase I. So it might be worth trying to do as much as possible via video calls and such to avoid giving them a juicy target to go after. I’ve only had my travel request rejected once, but they nitpick it and second guess it every time. In Phase II they’re more understanding, but not in Phase I.
9. Baking In Commercialization Help in Phase I Might Be a Good Idea: In the Phase II proposals, at least for NASA, the Part 7 on your commercialization plan is a bear. In Phase I, they just want to know what applications you think there are, and your rough development plan for Phase II. But in the Phase II proposal, they want what amounts to a 5-10pg business plan for taking this product to market. It’s a lot of work, especially for technologies that are often at least a few degrees off of your main business plan. So, getting some help on that section could be worthwhile. One thing we’re going to try this time is that there are companies that specialize in “Commercialization Technical Assistance”. In Phase II, you can request \$5k of CTA funding that doesn’t come out of your \$750k cost cap. The CTA companies then help you with identifying potential Phase III opportunities, commercial customers, and government programs you could infuse your technology into. They won’t give you that bonus \$5k for CTA help in Phase I, but there’s no reason you couldn’t include a subcontract to a CTA firm to provide that help during Phase I–so long as you can fit it into the allowed ~33% subcontracting limit. That’s what we’re going to try doing on a few of our Phase Is this time around.
10. Pay Yourself a Competitive Wage: As a startup founder, it’s often tempting to underpay yourself. The logic goes that doing so means more money going back into the business, which increases your effective runway for the company. And after all, you own a chunk of it, so why not take a lower salary to improve your odds of being successful. Unfortunately, I’ve gotten bit by this several times, and only finally learned my lesson. Basically, since you’re proposing more contracts than you expect to win, you almost always win some combination of contracts that leaves someone important double-booked, where you’re now going to have to hire someone new to fill in the gap. But if you were paying yourself below your replacement cost, that makes it really hard. Either you end up trying to recruit people paying them below market wages, or you end up losing money on the contract. But if you pay yourself at least what it would take to replace yourself as an engineer, then if you have to replace yourself, it’s a lot easier to do so without losing money because you can offer them a competitive salary.