Random Thought: NASA Externships as an Alternative to “Training-Wheels” Intramural R&D?

[Here’s one last draft I’ve found to polish off–this one only from a year ago. It’s a little bit of a touch subject–I’m not trying to denigrate what the NASA teams mentioned in this post were doing, just trying to suggest another, possibly better way of achieving the same underlying goal–that of giving new NASA engineers hands-on experience working on lean, fast-moving engineering projects.]

I’ve written about the idea of NASA/AFRL externships before, but lately I’ve been thinking about the idea again as an alternative to NASA “training-wheels” intramural R&D. By “training wheels” intramural R&D, I’m talking about internally run NASA R&D projects which have training new engineers as one of their primary purposes. As I’ve pointed out many times in the past, knowledge and experience of how to do things doesn’t reside in documentation or in the walls of an organization, it resides in people. And that knowledge/experience has a “shelf-life.” People who haven’t had recent experience can get rusty, and over time, even those people can disperse, either via retirement, job changes, etc. So having some way of training new teams and giving them solid, hands-on experience early in their careers is really important.

While NASA talks about its expertise in designing and building new launch vehicles, the reality is that many, if not most of the NASA people with actual experience in that area are gone by now (either dead or retired). The last successful new launch vehicle that NASA had a major role in was the Shuttle, and that flew for the first time 35 years ago, and any engineer older than 30 at that point has by now passed retirement age. While NASA won’t admit this problem too publicly, I think it has at least recognized this experience issue internally, which is why they’ve pushed hard on intramural R&D projects like Project Morpheus, Robonaut, Valkyrie and others over the past few years1. When you talk to people at NASA about some of these projects (and similar projects at other centers), you often hear one of the major justifications being that NASA is undergoing a lot of turnover as most of the existing NASA civil servants retire over the next decade or two. The newer hires don’t have experience building and running space projects, so having “training wheels” projects that they can get initial experience with, and even try out new ways of doing things, is a good way of making sure NASA prepares the next generation of engineers to take over as the current generation exits stage right.

Before I go on, I need to say that I find this desire admirable–NASA is taking a proactive approach to make sure their tax-payer-funded people have real hands-on experience, not just book learning. This is in general a very good thing.

These intramural R&D programs are also often sold as being very inexpensive–Morpheus for instance has bragged in the past that they’ve spent less than $5-10M getting to where they’re at. That would seem like a pretty reasonable price compared to commercial VTVL efforts. But then you hear that they’ve had >60 engineers working on the project over the past few years. There’s no way the fully-burdened cost of a NASA engineer is anything less than $100k/yr, more likely it’s in the $200k/yr range. NASA doesn’t count those costs, since they would’ve paid for that labor anyway, but it’s a real part of the cost of the project. When you take fully burdened costs into consideration, Morpheus has probably cost NASA more like $40M+ total, which all of the sudden stops seeming so frugal compared to comparable commercial efforts at companies like Masten and the now-defunct Armadillo Aerospace. Similarly, the Valkyrie robotics project has been called a $2M project, but it has also been reported to have over 50 FTEs working on it for over a year. That means it’s more like a $12-15M project.

The question becomes is this the best way of spending NASA resources to train future civil servants?

Possibly, but I have my doubts for the following three reasons:

  1. These projects in many cases compete with commercial efforts. While they may potentially create new NASA operational capabilities, they don’t encourage the creation of profitable new commercial space capabilities. By removing a good chunk of the NASA market for things like VTVL test beds or robotics systems, they make it that much harder to create businesses that serve NASA as one customer among many. NASA’s budget is unlikely to grow much over the coming years, so the best way for it to improve its bang for the buck is to encourage commercial companies to provide the services they need, in a way that allows them to get significant non-NASA customers so NASA isn’t having to carry the full burden of the fixed costs of those capabilities. Wouldn’t it be better if NASA found a way to train their engineers that actually encouraged the commercial development of space?
  2. While these projects teach engineers to do things cheaper than the traditional NASA way, they’re still very inefficient compared to commercial efforts. As one case in point, I had a friend who briefly worked with the Morpheus team. He was familiar with what the NGLLC teams had accomplished, and was surprised to find that for instance, the NASA team had over a dozen engineers working on GN&C and flight controls–a job that most of the smaller companies did just fine with 1 or 2 guys. While this may be a “new way of doing GN&C at NASA”, and may be a step in the right direction, wouldn’t it be better to train engineers in an environment that is as lean as private enterprise? While the NASA environment may not allow all lessons learned from private enterprise to be directly translated into practice, I think it would still help provide a better yardstick for them to compare how efficient they’re really being.
  3. These projects tend to develop IP that they then lock-up at NASA. While it’s possible to license those technologies, in many cases exclusively, that tends to favor companies with the deepest pockets or best lawyers/connections, not the ones with the best ability to successfully commercialize those technologies. While there are some examples of companies buying their way into a NASA technology and commercializing it well, I think it’s probably more likely to happen when the company already has technical chops of their own. Wouldn’t it be great if NASA could train its engineers in a way that disseminated the IP better into the hands of commercial companies that were well-poised to bring those technologies to market?

If the only way to get new NASA engineers more practical, hands-on experience was via these intramural R&D projects, it might be worth it, in spite of the negative impacts to commercial industry. But what if there was a way to get them experience in a way that actually helped commercial industry instead of competing against it? While the devil is probably in the details, I think “externships” are a potential way of doing this. For those of you who didn’t read the previous post, an “externship” is kind of like an internship, but instead of having a student or recent graduate work for you for a few months, you would get a NASA employee “on loan” for a specified amount of time.

NASA is already doing some potentially innovative public/private partnerships through programs such as the NextSTEP BAA and more recently the Tipping Point and Emerging Space Technologies solicitations that are currently out. In each of these cases, NASA is only putting up a portion of the money, and in some cases is only providing in-kind services through non-reimburseable Space Act Agreements. What if they added to those in-kind services by providing some of their engineers on a loaner basis to teams that can come up with good proposed projects to use them? Not just letting them access NASA personnel and facilities at NASA sites on a no-exchange of funds basis, but basically providing them with on-site externs as well.

You could probably structure the solicitation in a way to require the companies to provide a certain amount of their own people, and their own hardware money in order to access a small number of NASA-funded externs to augment their team. Maybe even throw in a NASA subject-matter expert as part of the team. It’s often the case that small companies can’t afford to have a specialist in some esoteric technical field that they’re only going to use occasionally, but borrowing one from NASA can help a lot. For instance, I remember that NASA Ames lent Dan Rasky to SpaceX back when they were investigating heat shield material, and he helped the SpaceX team develop the Pica-X material they are now using on Dragon.

This solution isn’t perfect, because it could still end up competing with private companies trying to provide contract engineering services, but if more of the “training wheels” experience for new NASA engineers was earned at commercial companies, working on developing new products in a truly lean organization, I think it would likely be a net good for the industry. For one thing, NASA would have a much better idea of what things ought to cost in a truly lean and hungry organization, and how big of a team you really need for various projects. These externs would also get to see the contrast between industry approaches and NASA standard processes, and would likely have a better idea of which NASA standard processes should be kept, which ones should be streamlined, and which ones are just plain baggage. I’m willing to bet that the knowledge would also flow both ways–you’d see industry learning some lessons and processes that actually do improve their effectiveness over time, and these NASA externs would also take their industry-gained experiences back to NASA, which would likely tone down some of the NASA analysis-paralysis over time.
Anyhow, just wanted to throw this out as food for thought.

The following two tabs change content below.
Jonathan Goff

Jonathan Goff

President/CEO at Altius Space Machines
Jonathan Goff is a space technologist, inventor, and serial space entrepreneur who created the Selenian Boondocks blog. Jon was a co-founder of Masten Space Systems, and is the founder and CEO of Altius Space Machines, a space robotics startup in Broomfield, CO. His family includes his wife, Tiffany, and five boys: Jarom (deceased), Jonathan, James, Peter, and Andrew. Jon has a BS in Manufacturing Engineering (1999) and an MS in Mechanical Engineering (2007) from Brigham Young University, and served an LDS proselytizing mission in Olongapo, Philippines from 2000-2002.
  1. I’m not trying to pick on NASA JSC where all three of these are primarily taking place, they just happen to be three of the better known NASA intramural R&D programs. As a friend once quipped, most NASA centers want their own internally-developed VTVL rocket these days…
This entry was posted in NASA, Random Thoughts, Space Policy. Bookmark the permalink.

6 Responses to Random Thought: NASA Externships as an Alternative to “Training-Wheels” Intramural R&D?

  1. ken anthony says:

    NASA is part of a bigger structural problem. Government should not be picking winners or losers. It should not be redistributing wealth. It may seem a good thing as a concentrator of wealth, but that ignores the unseen which is to deprive those not in favor. Government favor is corruption and in the worst case tyranny. Shouldn’t we be taking this corruption out of our government?

    What about pure research? PicaX for example? Suppose we all agree it’s a good thing that otherwise would not exist? Is it only available to SpaceX? It was derived from Pica and SpaceX did developed it further just as Bigelow has further developed inflatable technology.

    Government should not be a jobs program which again is corruption. Better use of money would be to fund research at universities which would be available to all. SpaceX could still have PicaX but it would have happened by hiring graduates that had a part in that research. More important, other graduates could be taken up by competing companies. Doing it the way we have decreases competition which is not a good thing. Those engineers should not be ‘externs.’ They should be part of the regular work force.

  2. Dave Huntsman says:

    Ken, with respect, I think you entirely missed Jon’s points. He’s not talking about picking winners and losers or generating corruption; he’s talking about finding a way to keep NASA folks current that also doesn’t compete with the private sector. I think his concept of externs is a good one, especially for new NASA engineers (who are also the most likely to not be tied down yet personally, able to spend 6 months to a year or so seconded to a company, etc.)

    Pica-X – the material, and just as importantly, the system for producing it that Dan Rasky helped Space-X with – did not come from grad students (or at least not primarily; there may have been some involved). “SpaceX could still have Pica-X” without Ames, Dan, etc. is simply not true.

    One problem, of course, is finding a leader, like a Center director, who will fight to fund such a thing on a more than trivial scale. Dan spent the better part of a year physically present at Space-X — at Space-Xs expense, by the way. They had a specific, long-term vision and need and the will to pay for it. The type of thing you are suggesting, Jon, would realistically only work on a no-exchange of funds basis; i.e., NASA pays the travel and salary/benefits et al for each and every engineer.
    Your point, I think, is that that might not necessarily be any ‘cheaper’ than the fully-burdened, full-cost accounting way of doing the Morhpeus’s et al in house now – and I think you may be right. However, logic only goes so far inside a bureaucracy (which is what NASA is: an over-50 year old bureaucracy; even older for some Centers, like mine). The increase in Center travel funds alone to fund such a thing on more than a minuscule level is not a bureaucratically trivial thing to get; and requires a determined senior lead to doggedly sell it. I don’t know if we have that, anywhere, now; though I could be wrong.

    I agree with your whole premise, however; and in fact, I suggested such a thing years ago (without having the smarts to coin the word “externships”) when I was head of my Center’s Engineering divisions (never got anywhere ’cause couldn’t get the additional travel monies). But, right now, my Center happens to be asking for ‘training needs input’ from folks; I’m going to see if somehow at least I can pulse the system again and see what sort of a response I get back from it.

    In reality, since training is done Center-by-Center, such a thing would seem to have to be implemented Center by Center; but then again, you run into the money thing, if one Center sticks its neck out. Ideally, it could come from somewhere like a line item in the (small!) NASA HQ Chief Engineer’s budget, dispersed to the Centers; but that would mean he’d have to fight for it. (I’m just musing, now….).

    Keep thinking…….

    Dave

  3. Dave,
    Yeah I imagine it would be something where you’d have one of the mission directorates sponsor the travel costs, and the center would only be covering the wages/benefits. Or, maybe it could be done via partially reimburseable SAAs of some sort, where the company covered some part of the travel costs, but NASA covered the salary/benefits while they were there.

    ~Jon

  4. ken anthony says:

    He’s not talking about picking winners and losers or generating corruption; he’s talking about finding a way to keep NASA folks current that also doesn’t compete with the private sector.

    Dave I didn’t miss his point. I was adding to it. Not talking about corruption is part of the problem.

    It is not possible for NASA people not to compete with the private sector. Being externs just shifts that competition around a bit.

    It’s easy to see benefits that exist. It’s much harder to see detriments that also exist.

    Boeing has made it plain that without NASA money there would be no CST-100. Both SpaceX and Sierra Nevada have taken the position they will move forward regardless. Which is healthier for the industry?

    You say it’s not about picking winners and losers? But of course it is. Denying corruption exists just makes it flourish.

  5. Paul451 says:

    Dave,
    I think what Ken is saying is that if NASA helps Company A by effectively supplying free labour, but doesn’t help Company B, it is gifting Company A with potentially millions of dollars. While NASA gets its engineers broken-in in return, it doesn’t change the fact that which companies do or don’t benefit from that free labour depends on the whim of some bureaucrat within NASA. (A bureaucrat who may be looking for their next job in aerospace…)

    Hence if you want to “blood” some young engineers, it may be less corrupting to just throw more money at university post-grad engineering research programs. NASA gets to develop novel ideas, and increases the number of aerospace/materials engineers available; but only has to fund post-grads, which is vastly cheaper than feeding and bedding FTEs in-house. The top 10-15% of engineers will likely be recruited into NASA centres or major NASA contractors.

  6. The chief technologist out at NASA Ames told me last year that a SBIR small business owned by a non engineer could hire an engineer to to do the work so here is my idea ( think I will blog about it today)
    Hire kelp to write a good kickstarter page
    using kickstarter to raise funds to hire a SBIR grant writer
    Grant writer might be your engineer as well
    Kickstarter phase two raises matching funds to that of the SBIR funds
    convince DOD/contractor internship programs can lead to Mentor protege subcontractor and not just employment
    (IE employee to subcontractor)
    SBIR allows for 30% of the work to be done outside your company, this is your mentor protege company
    right now my little company lives at the UM Flint student business incubator so this might be the way forward?
    hats off to Mr Goff to posting about space angels network and other space business incubators in a post a while back ( receives my vote)

Leave a Reply

Your email address will not be published. Required fields are marked *